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SUMMARY 
A numerical model is developed for calculating the twodimensional, unsteady, incompressible and turbulent flow 
within the rotating impeller and stationary volute of an industrial centrifugal pump. The objective is the 
investigation and comprehension of the instantaneous behaviour of centrifugal pumps, aiming at the reduction of 
vibrations, radial forces and hydraulic noise. The computation is performed within a blade-to-blade streamtube for 
the impeller and a tube normal to the axis of rotation for the volute. The equations to be solved are the unsteady 
Reynolds-averaged Navier-Stokes equations along with the continuity equation and the unsteady K--E equations 
for turbulence modelling. The finite volume method is applied for space discretization and an implicit scheme for 
time discretization. A multidomain overlapping grid technique is used for matching together the relative flow field 
calculated within the rotating impeller and the absolute one calculated within the stationary volute. In this way the 
impeller and volute interaction is directly taken into account. The numerical model is validated for a centrifugal 
pump of N, = 32 under design flow conditions. Comparisons between calculation and measurements show fairly 
good agreement. 
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1. INTRODUCTION 

Flow in turbomachinery is turbulent, three-dimensional, unsteady, either compressible or incompres- 
sible, sometimes with two-phase and cavitation phenomena appearing. In addition to that, 
turbomachinery configurations are of great complexity, with several different parts, rotating and 
stationary ones. In spite of the astonishing evolution of computers and numerical methods, some 
simplifying assumptions have to be made for calculating turbomachinery flows. These assumptions 
have to be chosen carellly, taking into account the particular test case and the physical phenomena 
appearing. A numerical model for turbomachinery flow computation may be used as a tool (a) for 
design optimization, (b) for prediction of hydrodynamic performances and (c) for comprehension of 
the physical mechanisms involved. 

According to the literature, unsteady flow in centrifugal pumps is responsible for vibrations, an 
important part of hydraulic noise,',' fluctuating radial forces acting on the impeller as well as eccentric 
oscillations of it.3 The unsteadiness of the flow is due to the rotation of the impeller (transportation in 
space), which is seen from the point of view of the stationary volute as a transportation in time. The 
unsteady wakes travelling downstream of the impeller blades impinge on the volute tongue, resulting 
in hydrodynamic fluctuations in both the impeller and volute. The volute tongue acts as an obstacle to 
the incoming unsteady flow and tends to amplify these fluctuations. Thus the instantaneous response of 
a centrifugal pump is a result of the impeller and volute interaction. The main difficulty in modelling 
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this interaction lies in the geometrical complexity of the two parts and in the relative motion of one 
with respect to the other. 

Chapin4 solves numerically the compressible, inviscid and three-dimensional flow field within a 
stationary blade cascade (stator) using the finite volume method. He sets as inlet condition a rotating, 
non-uniform, total pressure profile representing qualitatively the outlet of the rotor preceding the stator 
of the machine. 

Fatsis' presents a three-dimensional, inviscid, unsteady, indifferently compressible or incompressible 
flow computation within the rotating part of a turbomachine using the finite volume method. He sets as 
outlet condition a non-uniform static pressure profile coming from measurements performed in 
advance in the considered configuration. The apparent inconvenience of this method is the need for 
experimental data. 

Hureau6 presents a numerical calculation of the two-dimensional, potential, quasi-steady and 
incompressible flow field within the impeller and volute of a centrifugal pump using the singularity 
method. 

Morfiadakis et al.' perform a two-dimensional, inviscid, fully unsteady and incompressible 
computation within an industrial centrifugal pump, matching together the impeller and volute. They 
apply the bounda~~  element method, which is appropriate for treating complex geometries but rather 
inconvenient for three-dimensional and viscous flow computations. 

Miner et al. perform a two-dimensional, potential, incompressible and quasi-steady computation 
within a laboratory centrihgal pump using the finite element method. For each different impeller- 
volute orientation a different impeller-volute computational mesh is generated, which increases the 
total computational time and inhibits a fully unsteady computation. 

Badie' presents a similar two-dimensional, potential, incompressible and fully unsteady 
computation by applying the finite element method, with a zone of interface between the impeller 
and volute. This zone dispenses with the need for generating a different impeller-volute mesh for each 
different impeller-volute orientation. Thus this computation is faster than the previous one, permitting 
a fully unsteady state approach. 

Rai and Madavan" present a numerical model calculating the two-dimensional, unsteady, 
compressible and viscous flow field within an axial turbine rotor-stator configuration. They solve 
the unsteady thin layer Navier-Stokes equations using patched and overlaid grids for matching 
together different computational domains. 

Most works on unsteady flow in rotor-stator configurations simplify either the computational 
domain (e.g. only the rotor or stator is taken into account) or the flow field (e.g. potential or quasi- 
steady flow computation). The present work attempts a more realistic though two-dimensional 
approach, considering the flow fully unsteady, incompressible and turbulent. In fact, the unsteadiness 
of the flow and the viscosity of the working fluid are of primary importance for reliable instantaneous 
flow field predictions and cannot be neglected." The assumption of two-dimensional flow is expected 
to have a strong impact on the computational results, which is nevertheless attenuated by a quasi-three- 
dimensional approach. 

The equations to be solved are (a) the continuity equation, (b) the unsteady Reynolds-averaged 
Navier-Stokes equations and (c) the unsteady M--E equations for turbulence closure modelling. 

2. COMPUTATIONAL DOMAIN-DISCRETIZATION 

Figures l(a) and l(b) show the configuration of a centrifugal, mixed flow pump of a specific speed 
Nq = 32, designed and tested by CETIM (Centre Technique d'hdustries Mecaniques). Figure l(a) 
presents the meridian plane and Figure l(b) the plane normal to the axis of rotation of the pump. Two 
main parts are distinguished: the rotating part, which is the impeller consisting of Nb blades, and the 
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Figure 1.  Centrifugal pump: (a) meridian plane; @) plane nonnal to axis of rotation 

stationary one, which is the volute. Note that the volute of the pump in question is two-dimensional, of 
rectangular cross-section.The volute tongue, often placed close to the impeller exit, is a featuring part 
of the volute. 

2.1. Impeller gn'd 

A blade-to-blade streamtube is considered placed at mid-section between the hub and tip at the 
impeller exit (streamtube V = 0.5; Figure 2). This blade-to-blade tube is obtained by an inviscid, 
steady state calculation performed in the meridian plane of the impeller." Figure 3 shows the variation 
of the normalized flow field width throughout the impeller versus the meridian co-ordinate m for the 
mid-channel streamtube '4' = 0.5. This flow field width variation is incorporated into the blade-to-blade 
calculation performed within the impeller, through the spatial integration of the governing equations. 
In this way the two-dimensional computation resembles a quasi-three-dimensional one. 

The computational domain is a single-blade flow passage with one blade placed at mid-section and 
two periodic lateral boundaries. For simplicity the blades are considered infinitesimally thin. 

L. 

(1 

0'  

0 

Figure 2. Impeller. meridian plane. Streamlines from Y = 0 to 1 
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Figure 3. Normalized flow field width throughout impeller for 9 = 0.5 

An orthogonal curvilinear grid of ‘H’ type is generated in a single-blade flow passage by solving the 
Laplace equations V2@ = 0 and V’Y = 0 of the potential and irrotational flow, applying the finite 
volume method. 

2.2. Volute grid 

The computational domain is a mid-section tube normal to the axis of rotation (Figures l(a) and 
I(%)). An orthogonal curvilinear grid is generated by solving the Laplace equations via the finite 
element method. 

2.3. Remarh on impeller and volute grid generation 

Figure 4 shows a zoom of the impeller and volute grids near the volute tongue. The impeller outlet 
and volute inlet circumference and not smooth lines but ‘stepped’ ones (Figures 5(a) and 5(b)). They 
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Figure 5. Grid ‘cut into stairsteps’: (a) impeller outlet; (b) volute inlet 

will be referred to as boundaries ‘cut into stairsteps’. Cutting a boundary into stairsteps is a special 
technique for treating computational domains of non-orthogonal boundaries with orthogonal 
curvilinear grids. The implementation of this technique does not present any particular difficulties 
and does not modify the general structure of a typical finite volume code. One only needs to solve the 
governing equations for i = 1 to ni and j =j( 1) to j (ni) ,  where j ( i )  =j(i - 1) + 1, with j (  1) = 1 and 
j (n i )  = nj, instead of solving them for i = 1 to ni and j = 1 to nj. 

The impeller and volute grids are independently generated. Nevertheless, some restrictions are 
imposed on both grids, since they are meant to co-operate. 

1. The outlet of the impeller grid should not overlap the volute solid wall. Attention has to be paid 
especially near the volute tongue, where the distance between the impeller outlet and the volute 
solid wall is often very small. 

2. The inlet of the volute grid should not overlap the trailing edge of the blades. 
3. A thin overlapping grid zone should be formed between the impeller and volute grids in order to 

match together the two domains by transmitting data fiom one to the other. 
4. One would physically expect some abrupt gradients around the impeller outlet (volute inlet) 

circumference because of viscous wakes travelling downstream of the blades. Thus the impeller 
grid should be fine enough to enable good viscous wake simulation and the volute grid should be 
equally fine to enable good capture of the viscous wakes coming into the volute. 

For the test case presented here (centrihgal pump of Nq = 32), a 20 x 91 grid is generated within 
each single-blade flow passage of the impeller (Nb = 6 flow passages in all) and a 132 x 152 grid 
within the volute. 

3. GOVERNING EQUATIONS-DISCRETIZATION 

The flow is considered two-dimensional, incompressible, viscous (turbulent) and unsteady. The 
working fluid is considered Newtonian. The governing equations in the impeller and volute are as 
follows: 
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continuity equation 

unsteady Reynolds-avemged Navier-Stokes equations 

unsteady K-C equations for turbulence closure 

where Tc = v , ~ ,  T, = v,ff!o,, rE = veff/oE and veff = v + vt. 
In the above equations C is the velocity vector, Ci (i = 1,2) are the two velocity components, P is the 

static pressure, K is the turbulent kinetic energy and E its dissipation rate, G is the generation rate of 
turbulent kinetic energy, p is the density of the fluid and v its kinematic viscosity, vt is the turbulent 
kinematic viscosity according to the Boussinesq theorem and o,, a&, C1 and CZ are empirical constants 
of the K-C model. 

The above equations refer to both the impeller and volute. However, the symbol C stands for the 
absolute velocity in the volute where the computation takes place in the absolute (stationary) frame of 
reference, but for the relative velocity in the impeller where the computation takes place in the relative 
h e  (rotating with an angular velocity a). 

The force Fmt placed in brackets in the momentum equation (2) exists solely for the impeller 
calculation and is written as 

- - . - I  

F ~ f i ~ l k  = 2(fi A k), Fcmtrifilgal = 52 A (52 A 3, (6) 

where fi is the angular velocity of rotation of the impeller, ? is the radial co-ordinate and I? is the 
relative velocity vector of the rotating impeller. 

The turbulent kinematic viscosity vt is given by the formula vt = CDx2/&, where CD is an empirical 
constant of the K--E model. 

Initially the standard K--E turbulence closure modelI3 was applied for the impeller-volute modelling, 
as it is widely tested and has a well-hown computational behaviour, though it is rather inadequate for 
rotating flows. An improved version of the K-E model, accounting for rotating computational domains, 
is to be incorporated in the code at a later stage. 

All the above equations expressed in an orthogonal curvilinear system of co-ordiantes (5, q )  may be 
written in the general form 

where stands for 1, u, v, K or E indifferently, Ta is the diffusion coefficient, Sa is the source term, u 
and v are the velocity components along co-ordinates 5 and q respectively and hl and h2 are the metric 
coefficients of the orthogonal co-ordinate system. 
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Figure 6.  Bitrapezoidal element for integration of governing equations 

The finite volume method is applied for the space discretization of equation (7) and the SIMPLE 
algorithm for staggered grids is utilized for linking the velocity and pressure  field^.'^ For the 
discretization of the convection terms the hybrid upwind-central finite difference scheme is applied. 
The underrelaxation method is used for stabilizing the resulting system of equations during the 
iterative procedure. The optimum underrelaxation factors are found to be especially low, of the order of 
0.01. The Gauss-Seidel routine is used for solving the algebraic system of equations. 

An unconditionally stable first-order implicit scheme is applied for the time discretization. The time- 
dependent term is then expressed as 

a@ @!+At - @ t  

at At ’ w (8) - 

where At is the considered time step. 
Equation (7) may then be written in the general form 

(AP -SI)@P =ANON +As% +AE@E +&@w +Sz, (9) 

where S1 and S, come from the linearization of the source term S, = SIQP + S2. 
Note that the flow field is considered two-dimensional, since only two velocity components u and v 

are taken into consideration, but the grid cells for this computation are three-dimensional 
(bitrapezoidal elements; Figure 6). Thus, when equation (7) is integrated in space in order to be 
discretlzed, a volume element AV= A(AqAz is considered and not a surface one AA = A(Aq. In this 
way the flow field width variation throughout the computational domain is taken into account, the two- 
dimensional calculation resembling a quasi-three-dimensional one.5 

4. BOUNDARY AND INITIAL CONDITIONS-COMPUTATIONAL PROCEDURE 

Boundary conditions are set at the inlet and the outlet of the pump (impeller inlet and volute outlet 
respectively), considering that the dynamic interaction of the pump and the piping system is negligible 
and the inlet and outlet of the computational domain are placed sufficiently far away from the impeller 
blades and volute tongue. The velocity is set at the impeller inlet, calculated through the flowrate Q and 
the rotational speed N of the pump. The pressure is set constant at the volute exit (P = PO). At the solid 
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wall boundaries of the impeller and the volute the velocity is set to zero and wall-functions are applied 
for simulating the different boundary layer zones. Moreover, boundary conditions for k and E are set at 
the impeller inlet (k= lo-’ and E = O )  and the volute outlet (Neumann condition: zero normal 
derivative). These boundary conditions would suffice for the computation of the flow within the 
centrifugal pump in case that it was considered as one computational domain. However, the fact that 
the pump consists of two components, one rotating and the other stationary, requires that those are 
treated as two separate computational domains, with a zone of interface between them for matching 
them together. In that case, boundary conditions are also needed at the zone of interface (impeller 
outlet and volute inlet), which are at the outset unknown. The following iterative procedure is then 
implemented. 

Suppose that the pressure at the impeller outlet is known (an initial guess). Then, a computation can 
be performed within the impeller providing the velocity and pressure fields. The velocity field in the 
impeller being known, the velocity distribution around the volute inlet circumferance can be calculated 
through bilinear interpolations. Note that there is an overlapping-grid zone between the impeller and 
the volute, so that the volute inlet circumference is placed upstream of the impeller outlet 
circumference. The velocity distribution around the volute inlet circumference is set as volute inlet 
condition and then a computation can be performed within the volute, providing the velocity and 
pressure fields. The pressure field in the volute being known, the pressure distribution around the 
impeller outlet circumference can be calculated through bilinear interpolations. Now another 
computation can be performed within the impeller in order to update the impeller velocity field. Once 
the velocity field updated, another computation is performed within the volute to update the volute 
pressure field there, and so on, until convergence for the velocity and pressure fields is achieved within 
both domains. 

Since this is an unsteady-state computation, the aforementioned procedure is canied out for each 
time instant t (for t = At, t = 2At, etc., where At is the time-step considered), until the filly periodical 
flow field is obtained, that is until the velocity and pressure fields in the volute repeat themselves for 
two successive blade passings of the impeller. As initial condition for this computation (t  = 0) the 
steady-state flow field for the impeller and the volute is considered. 

The impeller may be treated either as one computational domain with grid dimensions 
Nb x (ni x nj), or as Nb separate subdomains (single-blade flow passages) with grid dimensions 
ni x nj. The latter is preferable for this simulation in order to save computational time and memory. 
The flow field is calculated separately in each subdomain, information being transmitted from one 
subdomain to the other through the lateral boundaries (zones of interface). Suppose that 
A8 = 2Z/& is the blade-to-blade pitch of the impeller. Within a time-step At an impeller blade 
sweeps an angular interval SO, where: 68 = QAt.  The time-step At is determined so that there is an 
integer number Nt, of angular intervals 68 for the pitch A8 to the swept by a blade: 
A 0  = N,S8 = N,QAt. An impeller blade, say N p  and the corresponding subdomain, will be 
found at the time instant t at the position occupied by the following blade (subdomain) Np + 1 at an 
earlier time instant t -&At.  The flow field calculated within the subdomain Np + 1 at the time 
instant t - N,At is stored and used as initial guess to start the computation in the subdomain Np at 
the instant t. This technique is proved to accelerate the convergence for each time step and to reduce 
the total computation time (Fatsis’). 

Periodicity is obtained with a precision of 1 0-2 after I5 to 18 impeller rotations, depending on the 
configuration and the flow conditions of the pump. The total CPU time required for such a 
computation is of the order of 80-100 hours on a HP-750 workstation. It is proved preferable to carry 
out a great number of subdomain-to-subdomain passings for each instant t, without caring for a strict 
convergence within each subdomain during each passing. In this way the coupling of different 
subdomains through boundary conditions is strengthened. 
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5. OVERLAPPING GRID TECHNIQUE 

A multidomain overlapping grid technique15316 is applied to interpolate (a) the static pressure K and E 

distributions at the impeller outlet circumference, from the respective fields calculated within the 
volute, (b) the absolute velocity, K and E distributions at the volute inlet circumference, from the 
respective fields calculated within the impeller, and (c) the relative velocity static pressure K and E 

distributions on the lateral boundaries of a single-blade flow passage of the impeller, from the 
respective fields calculated within the adjacent single-blade flow passages. 

Suppose that 0 is the unknown variable (standing for u, v , P, K or E indifferently) and M is a 
computational grid node at the boundary (inlet, outlet or lateral boundary indifferently) of the 
considered domain D1. Suppose that D2 is the adjacent domain where 0 is already calculated and 
known. The computational gnds are generated so that there appears a thin overlapping grid zone 
between the domains DI and D2. In this way the grid node M on the boundary of DI, is surrounded by 
the grid nodes A-D of D2 (Figure 7). The values of 0 at the above nodes will then be OB, 0~ and 
QD respectively. The value QM at M may then be calculated through bilinear interpolations as follows: 

@F = FZ@B + (1 - F2)@c, 0~ = F1 @A + (1 - FI)@D, @M = F ~ @ E  + (1 - F~)@F, 

where F1 = Aql/(Aql + Aq2), F2 = Aq3/(Aq3 + Aq4) and F3 = A t ,  / ( A <  + A t 2 )  (Figure 7 ) .  

6. COMPUTATIONAL RESULTS 
As test case for validating the numerical model, the flow within a centrifugal pump of a specific speed 
Nq = 32 is calculated (Figures l(a) and l(b)). A campaign of measurements has been conducted by 
CETIM (Croba, Kueny, Hureau and Kermare~'~), focused on the instantaneous velocity field in the 
impeller and the volute of this pump, for design flow conditions. The objective of these measurements 
was the investigation of the instantaneous performances of the pump, and the comprehension of the 
sources of vibrations and hydraulic noise, at design flow conditions. The main characteristics of the 
Nq = 32 pump are shown in Table I. The unsteady, incompressible, two-dimensional (accounting for 
the flow field width variation) and turbulent flow is calculated within this pump for design flow 
conditions: Qn = 0.136 m3/s, N, = 1450 rpm. 

Figure 8 shows the instantaneous static pressure distribution around the volute inlet circumference 
for five different time instants: t, t + 2At,  t + 4A4 t + 6At  and t + 8At, that is for five different 
impeller orientations with respect to the volute tongue. The time-averaged static pressure distribution is 



476 D. CROBA AND J. L. KUENY 

Table I. Characteristics of Nq = 32 centrifugal pump 
~~ 

D1 = 200 mm diameter at impeller inlet 
D2 = 380 mm diameter at impeller outlet 
B2 = 40 mm width at impeller outlet 
Ds = 392 mm diameter at volute inlet 
B, = 80 mm width at volute inlet 
I fMc = 29-9 m static head of impeller 
PmEh = 61.8 k W  mechanical power 

also indicated by a thicker line. Note that the flow field in the volute is periodic for the instants f and 
t + 10At (Nu = 10 for this test case). Pressure is normalized by the factor A P  = 0.5 pCi, where Ch 
is the radial velocity component at the pump inlet (Ci, = 4-36m/s =$ A P =  9.5 Wa). An 
instantaneous pressure distortion appears around the volute inlet circumference, which is clearly 
stronger near the volute tongue. For the time instant f + 4At, when an impeller blade is found just 
opposite the volute tongue, the instantaneous pressure distortion attains its maximum value. The time- 
averaged pressure distortion around the volute inlet is about 9.5 Wa, while for this pump the impeller 
elevation is about 300 kPa. Note that this pressure distortion at the volute inlet is calculated assuming a 
uniform velocity profile at the impeller inlet and a uniform pressure profile at the volute outlet. The 
strong pressure pulsations at the volute inlet circumference illustrated in Figure 8 are, according to 
literature (Guelich and Bolleter'), responsible for the greatest part of hydraulic noise of centrifugal 
Pumps. 

Figures 9(a) and 9(b) show the instantaneous circumferential and radial absolute velocity 
distributions around the volute inlet circumference for three different impeller-volute orientations (time 
instants t, t + 4At, t + 8At). The thicker line indicates the time-averaged velocity profiles. Two terms 
are distinguished. 

9 n 

8 
0 

I: t 

3: I+- 
5: t+4& 
7 : t t 6 &  
9: t+8Al 

Figure 8. Instantaneous static pressure profile around volute inlet circumference: 1.1; 3, f + 2At; 5 ,  f + 4 k ,  7, t + 6At; 9, t + 8At 
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Figure 9. Instantaneous absolute velocity profile at volute inlet: (a) circumferential component; (b) d i d  componmt; 
1 ,  r, 5, r+4Ar; 9, r+8At 

(a) A term due to the presence of the volute and, in particular, of the tongue, which is clearly 
distinguished on the time-averaged curves as circumferential velocity distortion maximized near 
the volute tongue. 

(b) A term due to the blade passing, appearing on the instantaneous curves as peaks corresponding 
to the viscous wakes travelling downstream of the impeller blades. 

These terms are also found in literature in the works of Yuasa and Hinab,’* Sideris and van den 
Braembussche.’’ As seen in Figure 9(b), the radial velocity component attains instantaneously zero or 
even negative values in the vicinity of the volute tongue. This indicates that the incoming flow to the 
volute is instantaneously blocked up near the tongue, a fact that is qualitatively confirmed by 
measurements in other centrifugal pumps (Dong, Chu and &do). 

Avalidation of the nmerical model will now be attempted through comparisons with measurements 
of the instantaneous velocity within the impeller and the volute of the N, = 32 pump for design flow 
conditions. 

Figures 10 and 11 show that circumferential and radial absolute velocity components versus time, 
from t to t + T, (where T = &&At is the rotational period of the impeller) at points 1 and 2 of the 
volute respectively. Point 1 is placed far away from the volute tongue and the impeller outlet, while 
point 2 is close to both of them as seen in Figure l(b). A very good agreement calculation- 
measurements is observed for point 1. The velocity profile is practically flat, which means that the 
viscous wakes travelling downstream of the blades are completely dissipated at point 1. For point 2, on 
the other hand, some strong velocity fluctuations appear, indicating that the viscous wakes are not 
dissipated yet. This happens because: (a) point 2 is close to the impeller outlet and (b) the proximity of 
the volute tongue tends to amplify the existent fluctuations. The above results agree qualitatively with 
l i teram (Miner, Beaudoin and Flack”, Hamkins and Flack22). The amplitudes as well as the phases 
of the velocity fluctuations at point 2 are well predicted, except for the radial velocity component where 
the measured amplitude is under-estitnated by the computation. In return, the calculated mean value is 
half as strong as the measured one for both velocity components, because of the abrupt widening of the 
flow field width when passing from the impeller outlet to the volute inlet (widths of 40 mm and 80 mm 
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Figure 10. Point 1 (volute) instantaneous absolute velocity profile versus time: (a) circumferential component; (b) radial 
Component 

respectively). This abrupt widening is imposed by the particular impeller-volute design of the N, = 32 
pump (see Figure 1 and Table I). To respect the continuity of mass when passing from the impeller to 
the volute the radial velocity component is divided by a factor of 2 and to respect the continuity of 
streamline inclination at the same point the circumferential velocity component is divided by the same 
factor. This manipulation of the circumferential and radial components is contestable, since it modifies 
the angular momentum (Cer) coming into the volute and it is susceptible of modifying the volute 
design flow conditions. This may explain the strong pressure distortion at the volute inlet (Figure 8). 
Note, however, that no such processing is required for a common centrifugal pump of conventional 
design, where the inlet volute width is equal to the impeller outlet width. Hence, this manipulation is 
applied only to the specific pump and it may by no means be considered as part of the numerical code 
presented here. 

Figures 12 and 13 show the circumferential and radial absolute velocity components versus time 
(from t to t + T), at points 3 and 4 of the impeller respectively, as seen From the stationary frame of 
reference (Figure 1 @)). For point 3 there is a good agreement calculation-measurements regarding the 

t 

Figure 1 1 .  Point 2 (volute) instantaneous absolute velocity profile versus time: (a) circumferential component; (b) &a1 
component 
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radial velocity component, while the mean value and the amplitude of the circumferential velocity 
component seem to be overestimated by the computation. Note, however, that the profiles of measured 
velocity at point 3 are quite incomplete, because of the practical difficulties in conducting 
measurements within the rotating impeller. For point 4 the comparison calculation-measurements is 
less satisfactory, because: (a) The thickness of the blades is considered negligible for this computation, 
though it is certainly important near the leadingedge of the blades; (b) The streamtube considered for 
the computation (Figure 1 (a)) and the one considered for the measurements are found not to coincide at 
the impeller inlet (difference in radius of about 10%). Velocity at computational point 4 and velocity at 
experimental point 4 are all the more not comparable as there is an important velocity gradient at the 
impeller inlet from hub to tip. 

This numerical model is conceived for predicting the instantaneous performances of centrifugal 
pumps, but it may, all the more reason, be used for predicting overall performances. For instance, the 
measured static head of the impeller of the N,, = 32 pump is Hsmhe = 29.9 m. The calculated one is 
HmhC = (Pmoud, - Pmal&)/(pg) = 30.7 m, where h o d d  and Pmal,, are the time-averaged pressures 
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at the impeller outlet and inlet respectively. There only appears a difference of 2.6% between 
calculation and measurements. 

7. CONCLUSIONS 

A numerical model has been developed for calculating the two-dimensional, unsteady, incompressible 
and turbulent flow simultaneously within the rotating impeller and stationary volute of industrial 
centrifugal pumps. The flow field width variation throughout the impeller has also been taken into 
account for this computation. The finite volume method was applied to discretize the goveming 
equations in space and an implicit scheme to discretize them in time. A multidomain overlapping grid 
technique was used for matching together the different computational subdomains. As a test case the 
flow field within a centrifugal pump of Nq = 32 was calculated under design flow conditions. The 
physical aspect of the instantaneous performances of centrifugal pumps, as reported in literature, was 
accurately predicted by the model. Comparison between calculation and measurements regarding the 
instantaneous velocity field showed fairly good agreement, in particular far away from the volute 
tongue. Further improvements in the numerical model are to be undertaken, such as (a) application of a 
second-order numerical scheme for the convection terms (e.g. QUICK scheme), (b) application of an 
improved version of the K--E turbulence closure model, adequate for rotating flow fields, and (c) 
improved inlet and outlet conditions for the pump, taking into consideration the pumppiping system 
interaction. In reality there appear some pressure pulsations at the volute exit and some flow rate 
pulsations at the impeller inlet which may be of primary importance for the instantaneous response of 
the pump. (d) A quasi-three-dimensional computation is to be undertaken in the impeller and volute to 
improve the model performances near some difficult zones such as the volute tongue. 
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APPENDIX: NOMENCLATURE 

orthogonal curvilinear co-ordinates 
Cartesian co-ordinates 
serial numbers of grid lines along r- and q-directions 
maxima of i and j 
meridian, radial and angular co-ordinates 
scalar potential and streamfunction 
m&c coefficients of orthogonal curvilinear co-ordinate system 
coefficients of linear interpolations 
velocity components along r- and qdirections 
static pressure 
turbulent kinetic energy 
turbulent kinetic energy rate of dissipation 
density of fluid 
kinematic viscosity of fluid 
turbulent kinematic viscosity 
effective kinematic viscosity 
empirical constants of K-E model 
diffusion coefficient and source term 
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A0 
se 

absolute and relative velocity vectors 
circumferential and radial absolute velocity components 
angular velocity vector of rotating impeller 
Coriolis and centrifugal forces 
time instant and time step 
flow rate (nominal) 
rotational speed (nominal) 
specific speed 
number of impeller blades 
total number of time steps for one blade to sweep a single-blade flow passage 
or a blade-to-blade pitch 
blade-to-blade pitch 
angle swept by a blade in time interval At 

REFERENCES 

I.  J. F. Guelich and U. Bolleter, 'Pressure pulsations in centrifugal pumps’, 1 Yibr A c w t . .  114, 272-279 (1992). 
2. W. Neise, ‘Review of noise nduction mahods for centrihgal fans’. 1 Eng. I d . ,  104, 151-161 (1982). 
3. D. R. Adkins and C. E. B m e n .  ‘Analyses of hydrodynamic radial forces on centrihgal pump impellers’, 1 Fluids Eng., 

4. V Chapin, ‘Contribution a la simulation numhique de l’inteiaction ahodynarmque de d e w  roues ail&’, Ph.D. Thesis, 

5 .  A. Fatsis, ‘Three dimensional unsteady flow calculations in radial components’, in Lecm Series 1993-01, Spucecm$ 

6 .  F. Hureau, ‘Methode theorique et exphimentale de Caracttrisation des ecoulements instantionnaifcs dans les pompes 

7. E. E. Morfiadakis, S. G. Voutsinas and D. E. Papantonis, ‘Unsteady flow calculation in a radial flow centrifugal pump with 

8. S. M. Miner, R. D. Flack and P. E. Allaire, ‘Ttvodmm ’ sional flow analysis of a laboratory centrifugal pump’, 1 Turbomad.. 

9. R. Badie, ‘Analysis of unsteady potential flows in centrifugal pumps. Analytical and finite-elemmt calculations in a 
centrifugal volute pump’, Ph.D. Thesis, Mechanical Engineering Department, University of k t e ,  Enschede, 1993. 

10. M. M. Rai and N. K. Madavan, ‘Multi-airfoil Navier-Stokes simulations of turbine rotor-stator interaction’, 1 hrbomach., 

1 1. D. Croba and J. L. Kueny, ‘Unsteady flow computation in a centrifugal pump. Coupling of the impeller and the volute’, Proc. 

12. T. Katsanis and W. D. McNally, ‘Revised FORTRAN program for calculating velocities and streamlines on the hubshroud 

13. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Ilrbulence, Acadrmic, New Yo*, 1972. 
14. S. V Patankar and D. 8 .  Spalding, ‘A calculation procedurr for heat, mass and momentum transfer in three-dimensional 

15. M. C. Thompson and J. H. F h g e r ,  ‘An adaptive multi-grid technique for the inwmprcsaible Navier-Stokes equations’, 1 

16. M. M. Rai, &‘Navier-Stokes simulations of rotor-stator interaction using patched and overlaid grids’, AUA 1 PrOpuLF. 

17. D. Croba, J. L. Kueny, F. Hureau and J. Kermaxec, ‘Numerid and experimental unsteady flow analysis in centrifugal pumps. 
Impeller and volute interaction’, h c .  Int. S p p .  on Pump Noise and Yibmtions, Sociiti Hydmtechnique de h c e  (SHF), 

110, 2&28 (1988). 

Universitk Pierre et Marie Curie, Paris VI, 1993. 

PmpuLrion, von Karman Institute for Fluid Dynamics, BNSS~~S,  1993. 

centrifuges’, Ph.D. Thesis, Universitk de Nantes, 1989. 

spiral casing’, Inf. j .  numer: methodrfiids, 12, 895-908 (1991). 

114, 333-339 (1992). 

112,377-384 (1990). 

Int. INCE Symp. for Fan Noise, Senlis, 1992, pp. 221-228. 

midchannel stream surface of axial, radial or mixed flow turbomachines of annular duct’, NASA lND8431,  1977. 

parabolic flows’, Inr. 1 Heat Maw knsf ir ,  15, 1787-1806 (1972). 

Comput. Phys., 82, 94-121 (1989). 

power, 3,387-396 (1987). 

Cl- 1993, pp. 11 1-1 19. 
18. T. Yuasa and T. H h t a ,  ‘Fluctuating flow behind the impeller of centrifugal pump’, Bull. JS@, 22, 1746-1753 (1974). 
19. M. Sideris and R. A. van den Brannbusschc, ‘InRuence of a c i r c u m f d a l  exit pressure diatolton on the flow in an 

20. R. Dong, S. Chu and J. Katz, ‘Quantitative visualization of the flow within the volute of a cenlrifud p q .  Part A: 

21. S. M. Miner, R. J. h u d o i n  and R. D. Flack, ‘Laser velocimcter measurements in a centrifugal flow pump’. A -bomch.. 

22. C. P. H&s and R D. Flack ‘Laser velocimetcr rneasumnmts in shrouded and unshmuded radial flow pump +urn’, 

impeller and diffwr’, ASME, J Eng. Gtw lLrbines Power, (1986). 

Tffihnique. Part B: Results and analysis’, 1 Flu& Eng., 114. 391403 (1992). 

111.205-212 (1989). 

1 Zbbomach., 109, 70-76 (1987). 


